Activated IGF-1R inhibits hyperglycemia-induced DNA damage and promotes DNA repair by homologous recombination.

نویسندگان

  • Shuo Yang
  • Janaki Chintapalli
  • Lakshmi Sodagum
  • Stuart Baskin
  • Ashwani Malhotra
  • Krzysztof Reiss
  • Leonard G Meggs
چکیده

The IGF-1R is a genetic determinant of oxidative stress and longevity. Hyperglycemia induces an exponential increase in the production of a key danger signal, reactive oxygen intermediates, which target genomic DNA. Here, we report for the first time that ligand activation of the IGF-1R prevents hyperglycemia-induced genotoxic stress and enhances DNA repair, maintaining genomic integrity and cell viability. We performed single gel electrophoresis (comet assay) to evaluate DNA damage in serum-starved SV40 murine mesangial cells (MMC) and normal human mesangial cells (NHMC), maintained at high ambient glucose concentration. Hyperglycemia inflicted an impressive array of DNA damage in the form of single-strand breaks (SSBs) and double-strand breaks (DSBs). The inclusion of IGF-1 to culture media of MMC and NHMC prevented hyperglycemia-induced DNA damage. To determine whether DNA damage was mediated by reactive oxygen species (ROS), ROS generation was evaluated, in the presence of IGF-1, or the free radical scavenger n-acetyl-cysteine (NAC). IGF-1 and NAC inhibited hyperglycemic-induced ROS production and hyperglycemia-induced DNA damage. We next asked whether IGF-1 promotes the repair of DSB under hyperglycemic conditions, by homologous recombination (HRR) or nonhomologous end joining (NHEJ). Repair of DSB by NHEJ and HRR was operative in MMC maintained under hyperglycemic conditions. IGF-1 increased HRR by nearly twofold, whereas IGF-1 did not affect DNA repair by NHEJ. IGF-1R enhancement of HRR correlated with the translocation of Rad51 to foci of DNA damage. Inhibition of Rad51 expression by short interfering RNA experiments markedly decreased percentage of MMC positive for Rad51 nuclear foci and increased hyperglycemic DNA damage. We conclude that the activated IGF-1R rescues mesangial cells from hyperglycemia-induced danger signals that target genomic DNA by suppressing ROS and enhancing DNA repair by HRR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The impact of the IGF-1 system of cancer cells on radiation response – An in vitro study

Background Overexpression of the insulin-like growth factor-1 receptor (IGF-1R) is associated with increased cell proliferation, differentiation, transformation, and tumorigenicity. Additionally, signaling involved in the resistance of cancer cells to radiotherapy originates from IGF-1R. The purpose of this study was to investigate the role of the IGF-1 system in the radiation response and furt...

متن کامل

Structural maintenance of chromosomes flexible hinge domain containing 1 (SMCHD1) promotes non-homologous end joining and inhibits homologous recombination repair upon DNA damage.

Structural maintenance of chromosomes flexible hinge domain containing 1 (SMCHD1) has been shown to be involved in gene silencing and DNA damage. However, the exact mechanisms of how SMCHD1 participates in DNA damage remains largely unknown. Here we present evidence that SMCHD1 recruitment to DNA damage foci is regulated by 53BP1. Knocking out SMCHD1 led to aberrant γH2AX foci accumulation and ...

متن کامل

MicroRNA-22 Suppresses DNA Repair and Promotes Genomic Instability through Targeting of MDC1.

MDC1 is critical component of the DNA damage response (DDR) machinery and orchestrates the ensuring assembly of the DDR protein at the DNA damage sites, and therefore loss of MDC1 results in genomic instability and tumorigenicity. However, the molecular mechanisms controlling MDC1 expression are currently unknown. Here, we show that miR-22 inhibits MDC1 translation via direct binding to its 3' ...

متن کامل

Hepatoma-derived growth factor-related protein 2 promotes DNA repair by homologous recombination.

We have recently identified lens epithelium-derived growth factor (LEDGF/p75, also known as PSIP1) as a component of the homologous recombination DNA repair machinery. Through its Pro-Trp-Trp-Pro (PWWP) domain, LEDGF/p75 binds to histone marks associated with active transcription and promotes DNA end resection by recruiting DNA endonuclease retinoblastoma-binding protein 8 (RBBP8/CtIP) to broke...

متن کامل

And-1 coordinates with CtIP for efficient homologous recombination and DNA damage checkpoint maintenance

To prevent genomic instability, cells respond to DNA lesions by blocking cell cycle progression and initiating DNA repair. Homologous recombination repair of DNA breaks requires CtIP-dependent resection of the DNA ends, which is thought to play a key role in activation of CHK1 kinase to induce the cell cycle checkpoint. But the mechanism is still not fully understood. Here, we establish that An...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 289 5  شماره 

صفحات  -

تاریخ انتشار 2005